The Key to Success in the Long Sprints: Speed Reserve

Posted by Latif Thomas



Developing a ‘speed reserve’ through a well designed speed development program is essential to success in the track & field sprint events, especially the ‘lactic acid’ events like 300m (especially for girls), 400m and 400h.

Speed reserve is, essentially, the difference between an athlete’s maximum speed and their maximum aerobic speed.

In many coaching situations, we look at an athlete’s perceived inability to finish a workout in the expected time as a matter of not being ‘in shape’. (A discussion of what ‘in shape’ actually refers to in the parameters of anaerobic training is a topic for another time, but one that fundamentally affects the way athletes are coached.) The solution, for many coaches, is to add more reps, slow the athlete down, give more rest, etc. This is done with the underlying belief that more ‘conditioning’ will allow the athlete to ‘hit their times’ or ‘finish strong’. And I will admit that after being conditioned by this belief for years, I will often find myself reverting to this mindset when I see my athletes breaking down in their workouts. I must, however, override this impulse the same way an athlete in a close race must override the belief that straining harder will get them to the finish line faster.

What this means is that, in large part, the reason that athletes are not hitting their times or that they are falling apart at the end of a game or race is not that lack aerobic or anaerobic capacity or need to do more over distance training. In fact, the answer is often that the athlete simply has not developed the pure speed required to take maximum advantage of the energy system requirements of that particular sport, race, interval, etc.

RELATED: 3 Reasons Sprinters Fall Apart at the End of Races

high school 400m training

Sanya Richards-Ross wins the gold in the 400m — and she is also a six-time world champion in the 200m

A classic example of the importance of developing a speed reserve is seen at the elite levels in the 400m dash. The vast majority of world class 400 meter runners are former 100 and 200 meter runners who moved up. When is the last time you saw a National Championship or major track meet where the finalists comprised a majority of former 800 and 1500 meter runners who moved down? Chances are the answer is never. I use the 400 because it is a classic example of an event that requires both anaerobic and aerobic qualities. How much of each is a subject of debate. I have seen as great as an 80/20 anaerobic to aerobic split over 400 meters, while Clyde Hart claims that the split is more along the lines of 60/40 anaerobic to aerobic.

Let’s look at a practical example, using the 400, that explains why a focus on developing more speed is usually the answer to an athletes perceived inability to achieve expectation as opposed to reducing the speed and intensity of their training for more so-called ‘conditioning’ and over distance.

This, of course, is not a new example, but one that is quite effective at proving the point.

We have ‘Athlete A’ and ‘Athlete B’, both of whom are going to be competing against each other in a 400 meter sprint. All other things being equal:

Athlete A has a 200 meter personal best of 22.0.
Athlete B has a 200 meter personal best of 22.5.

Both athletes know that they will likely need to run a 49.0 to have a good chance at winning the race. Therefore, their individual race strategies must comprise this fact.

They will use the race distribution suggestion from the USATF Level II Sprints manual which says, for male athletes:

1st 200m – Best 200m + 1.0 – 1.5 seconds
2nd 200m – 1st 200m + 1.0 – 1.5 seconds

Using this chart (and splitting the difference) each athlete’s race strategy should be as follows.

Athlete A: 1st 200m – 23.25, 2nd 200m – 24.5 = 47.75 seconds
Athlete B: 1st 200m – 23.75, 2nd 200m – 25.0 = 48.75 seconds

As a side note, I have found that with high school kids (and with younger athletes there will be an even greater difference) this may not be an incredibly realistic distribution. I find that the difference between first 200 and second 200 is usually between 3-4 seconds.

If you’re athlete B and you run a smart race, you’re going to lose by a full second as long as your 200m PR is .5 seconds slower than your competitor. That only leaves him with one choice if he wants to win. He has to go out at his competitor’s pace and hang on down the stretch.

But here’s the problem, if both athletes go through the first 200m at 23.25, Athlete A is running at 94.6% of his 200m PR pace, while Athlete B is running at 96.8%. Through the first half of the race, Athlete A has reserved a differential of over 2%. He’s simply not working as hard as his competitor. Who do you think is feeling fresher at this point?

Over the back half of the race, Athlete A needs to run at 89.8% of his PR to achieve the goal time he believes will win the race. Athlete B, already running 2.3% harder than his opponent, must run at 91.8% of his 200m PR just to stay even.

What can we expect for an outcome to this race? Do you think Athlete B, working over 2% harder to just to keep even, will out kick Athlete A? Not likely. Even if you argue that Athlete B has more aerobic power than Athlete B, that’s a lot to make up for.

You may be saying, ‘But what’s 2% over an entire race?’

All things being equal, the best Athlete B can hope for going into the race is a 48.75. But if he tries to go fast, tries to stay with the athlete who is flat out faster and loses 2% off his goal time, he crawls in at 49.73. The point in all of this, when you look at the numbers, is that Athlete A turns a .5 second advantage in speed reserve (over 200m) into a near 2 second victory (over 400m). The athlete with more speed is going to win a foot race, regardless of event or sport. This even applies under a state of fatigue and even when considering lactic threshold (which will occur at around 40 seconds in a sub-elite athlete).

In track terms, if you want to run a good 800 you have to be able to run a good 400. To run a good 400, you have to run a fast 200. To be a great 200m runner, you need to have 100m speed, etc., etc.

How do you develop speed reserve in your sprinters? It starts with knowing and understanding the energy system demands of the event/s they compete in. From there, you should implement a ‘short to long’ speed development program  that spends the bulk of time, effort and instruction on acceleration development. The important thing is not to be in a rush. Speed development is a skill that takes time, particularly at the beginning. Don’t be in a rush and progress athletes who have not developed their skills, even if that means it is another coach or program who sees the full maturation of that athlete or group of athletes.

4 Goals of 400m Training

But when you develop athletes that are faster than the competition over each progressive distance and use program design techniques that are specific to their training age and event group, as well as focus on developing the five biomotor abilities, they can rely on their speed reserve once fatigue kicks in. It is that reserve of anaerobic speed, not aerobic conditioning, that is going to make the difference on the track, especially over that grueling final 100 meters.

=-=-=-



Latif Thomas owns and operates Complete Track and Field and serves as the Co-Director of the Complete Track and Field Clinic, the largest track and field clinic in the United States. A popular speaker and presenter at some of the largest coaching clinics in the country. Over the past 15 years, he has coached more combined League, Division, All State and New England Champions in the sprints, hurdles, and jumps than he had the emotional strength to go back and try to count. Follow @latif_thomas on Twitter

Related Posts

Stop Doing “Recovery” the Day After Speed Work [PART 3]

Stop Doing “Recovery” The Day After Speed Work [PART 2]

How to write better workouts for high school sprinters

What to Do When Disaster Strikes at a Major Meet

Summer Camp Registration Deadline is This Friday!